Package: upriver (via r-universe)

October 31, 2024

Type Package Title An R package for in-river fish migration and timing calculation Version 0.1 Date 2015-02-26 Author person(``Bryce", ``Mecum", ``brycemecum@gmail.com", c(``aur", ``cre")) Maintainer Bryce Mecum <brycemecum@gmail.com> Description An R package for in-river fish migration and timing calculation. License file LICENSE LazyData TRUE Suggests testthat RoxygenNote 6.0.1 Repository https://amoeba.r-universe.dev RemoteUrl https://github.com/amoeba/upriver RemoteRef master **RemoteSha** ffdd3a787d6364554fc30ea4b52ac61cb424055e

Contents

Index

expand_parameters .					•	•	 •									•	•			•	•	1
median_timing			•	•		•	 •			•	•	•		•	•	•			•	•		1
percentile_timing							 •															
positions							 •															4
timings			•			•	 •				•					•						4

expand_parameters Expand movement parameters

Description

Expands the movement parameters to include a 0th and n+1th reach.

Usage

```
expand_parameters(parameters)
```

Arguments

parameters (list) Movement parameters (names: rates, distances)

Value

(list) Expanded parameters

median_timing	Calculate median timing
_ 0	()

Description

Calculate median timing given a set of parameters

Usage

```
median_timing(location, arrival, parameters, arrival_position = 0)
```

Arguments

location	(numeric) The location at which you want to calculate median timing.			
arrival	(data.frame) A data.frame of daily arrivals by proportion. See details.			
parameters	(list) See positions for details.			
arrival_position				
	(numeric) Defaults 0. Where to start movement.			

Details

#' arrival should be a data.frame describing a set of daily arrivals of fish at arrival_position as a series of daily proportions. It should have a column day and a corresponding column proportion, which should sum to one.

percentile_timing

Examples

percentile_timing Calculate an arbitrary timing percentile

Description

Calculate an arbitrary timing percentile given a set of parameters

Usage

```
percentile_timing(percentile, location, arrival, parameters,
    arrival_position = 0)
```

Arguments

percentile	(numeric) An arbitrary timing percentile (between 0 and 1)
location	(numeric) The location at which you want to calculate median timing
arrival	(data.frame) A data.frame of daily arrivals by proportion. See details.
parameters	(list) See positions for details.
arrival_positio	n
	(numeric) Defaults 0. Where to start movement

(numeric) Defaults 0. Where to start movement.

Details

#' arrival should be a data.frame describing a set of daily arrivals of fish at arrival_position as a series of daily proportions. It should have a column day and a corresponding column proportion, which should sum to one.

Examples

positions

Description

Calculate positions after ndays has elapsed, given the movement parameters provided in parameters.

Usage

```
positions(ndays, parameters)
```

Arguments

ndays	(numeric) The number of days to calculate positions for.
parameters	(list) List with names reaches, rates, distances. See details.

Details

parameters should be a list with three elements, rates, and distances, each of equal size. rates should be a numeric vector of reach-specific daily movement rates, in whatever unit your analysis needs. distances should be a numeric vector of reach-specific reach lengths (end-to-end), in the (ideally) the same or compatible units to the units used in rates

Examples

timings

Calculate run timings

Description

Calculates run timing given a set of parameters.

Usage

```
timings(location, arrival, parameters, arrival_position = 0)
```

timings

Arguments

location	(numeric) The location at which to calculate to run timing.
arrival	(data.frame) A data.frame of daily arrivals by proportion. See details
parameters	(list) See positions for details.
arrival_positio	on
	(numeric) Defaults 0. Where to start movement.

Details

arrival should be a data.frame describing a set of daily arrivals of fish at arrival_position as a series of daily proportions. It should have a column day and a corresponding column proportion, which should sum to one.

Examples

timings(1000,

```
data.frame(day=0:40, proportion = dnorm(-20:20, 0, 5)/sum(dnorm(-20:20, 0, 5))),
list(rates = 50, distances = 1000))
```

Index

 $\texttt{expand_parameters, 2}$

median_timing, 2

percentile_timing, 3
positions, 2, 3, 4, 5

timings,4